Sodium Triaqua(ethylenediaminetetraacetato)lanthanate(III) Pentahydrate and the Isomorphous Neodymium(III) and Europium(III) Salts

KEISUKE NAKAMURA, TSUTOMU KURISAKI, HISANOBU WAKITA AND TOSHIO YAMAGUCHI*

Department of Chemistry, Faculty of Science, Fukuoka University, Nanakama, Jonan-ku, Fukuoka 814-80, Japan

(Received 5 December 1994; accepted 7 February 1995)

Abstract

Sodium triaqua[(1,2-ethanediyldinitrilo- $\kappa^2 N, N'$)tetraacetato- $\kappa^4 O^1, O^2, O^3, O^4$]lanthanate(III) pentahydrate, Na[La(C₁₀H₁₂N₂O₈)(H₂O)₃].5H₂O, sodium triaqua[(1,2ethanediyldinitrilo- $\kappa^2 N, N'$)tetraacetato- $\kappa^4 O^1, O^2, O^3, O^4$]neodymate(III) pentahydrate, Na[Nd(C₁₀H₁₂N₂O₈)-(H₂O)₃].5H₂O, and sodium triaqua[(1,2-ethanediyldinitrilo- $\kappa^2 N, N'$)tetraacetato- $\kappa^4 O^1, O^2, O^3, O^4$]europate(III) pentahydrate, Na[Eu(C₁₀H₁₂N₂O₈)(H₂O)₃].5H₂O, are isomorphous and isostructural; all contain nine-coordinate lanthanoid ions, each of which bonds to two N atoms, four acetate O atoms and three water molecules.

Comment

The change in coordination number of lanthanoid-(III) complexes in solution, arising from the lanthanoid contraction, has attracted much attention recently in connection with the anomalous behaviour (a double series or S-shaped) in their thermodynamic and physico-chemical properties (Yamaguchi, Nomura, Wakita & Ohtaki, 1988). For aqualanthanoid(III) complexes, it has been found from extended X-ray absorption fine structure (EXAFS) studies (Yamaguchi et al., 1988) that in aqueous solution the hydration number of the lanthanoid(III) ions changes from nine for the light ions to eight for the heavy ions through an equilibrium between nine and eight for the intermediate ions. In the solid state, however, the nonaaqualanthanoid-(III) ions are formed throughout the series (Kurisaki, Yamaguchi & Wakita, 1993). Thus, it is important to compare the coordination structures of lanthanoid-(III) complexes both in solution and in crystals. A similar EXAFS study has been carried out on ethylenediaminetetraacetate (edta) complexes of a series of the lanthanoid(III) ions in solution (Nakamura, Yamaguchi, Wakita, Nomura & Choppin, 1993). The corresponding crystal structures are needed for comparison as structural standards in the EXAFS data analysis. The crystal structures of the lanthanoid(III)-edta complexes

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved have previously been determined for orthorhombic Na[Ln(edta)(H₂O)₃].5H₂O (Ln = Pr, Sm and Gd) (Templeton, Templeton, Zalkin & Ruben, 1982), monoclinic Na[Ho(edta)(H₂O)₃].5H₂O (Templeton, Templeton & Zalkin, 1985), orthorhombic Na[Dy(edta)(H₂O)₃].5H₂O and monoclinic Cs[Yb(edta)(H₂O)₂].3H₂O (Nassimbeni, Wright, van Niekerk & McCallum, 1979). Only preliminary data are available for the potassium salt of the La(III)–edta complex (Hoard, Lee & Lind, 1965). In this study, we have determined the crystal structures of the hydrated sodium salts of the edta complexes of La^{III}, (1), Nd^{III}, (2), and Eu^{III}, (3).

The three compounds crystallize in the orthorhombic space group Fdd2, as do the sodium salts of the analogous edta complexes of Pr^{III}, Sm^{III} and Gd^{III} (Templeton *et al.*, 1982), and Dy^{III} (Nassimbeni *et al.*, 1979), with which they are isomorphous and isostructural. The fractional atomic coordinates and the equivalent isotropic displacement parameters are listed in Tables 1, 2 and 3. *ORTEPII* (Johnson, 1976) plots of the coordination moieties for the complexes are given in Figs. 1, 2 and 3. The atomic positions in Na[La(edta)(H₂O)₃].5H₂O are similar to those in K[La(edta)(H₂O)₃].5H₂O (Hoard *et al.*, 1965).

Fig. 1. ORTEPII (Johnson, 1976) plot for $Na[La(C_{10}H_{12}N_2O_8)-(H_2O)_3].5H_2O$. Displacement ellipsoids are drawn at the 50% probability level.

The important interatomic distances and bond angles for these ions are listed in Tables 4, 5 and 6. The individual lanthanoid(III) ions have a typical ninefold coordination, consisting of two amino N atoms, four acetate O atoms, and three water molecules, as found for Pr^{III} , Sm^{III} and Gd^{III} (Templeton *et al.*, 1982), and Dy^{III} (Nassimbeni *et al.*, 1979). The Ln—O and Ln—N distances decrease with increasing atomic number, as expected from the lanthanoid contraction. The environment of the Na cation is best described in terms of its position at the center of a highly distorted octahedron. The Na—O distances vary from 2.378 (9) to 2.566 (6) Å. Probable hydrogen bonds are listed in Tables 4, 5 and 6; the O···O contacts lie between 2.60 (3) and 2.96 (2) Å.

Fig. 2. ORTEPII (Johnson, 1976) plot for $Na[Nd(C_{10}H_{12}N_2O_8)-(H_2O)_3]$.5H₂O. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3. ORTEPII (Johnson, 1976) plot for Na[Eu(C₁₀H₁₂N₂O₈)- (H₂O)₃].5H₂O. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

Crystals of the La- and Eu-edta complexes were prepared by refluxing 5 mmol of the relevant lanthanoid oxide with 10 mmol of H₄edta in 250 ml water and periodically adding small sodium hydroxide pellets until the oxide dissolved. The pH of the solutions was adjusted to 4.5 by adding aqueous NaOH. After slow evaporation of solvent at room temperature colorless prismatic crystals appeared in the mother solution. An aqueous solution of the Nd–edta complex was prepared by mixing commercially available NdCl₃ with the ligand in a 1:1 molar ratio in water. The pH of the solution was adjusted to 4.5 by adding aqueous NaOH. Violet prismatic crystals appeared on allowing the mother solution to stand at room temperature for a week.

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

reflections $\theta = 20.56 - 22.93^{\circ}$

 $\mu = 2.081 \text{ mm}^{-1}$

 $0.4 \times 0.3 \times 0.3$ mm

T = 298 K

Prismatic

Colorless

Cell parameters from 25

Compound (1) Crystal data

Na[La(C₁₀H₁₂N₂O₈)-(H₂O)₃].5H₂O $M_r = 594.23$ Orthorhombic *Fdd2* a = 19.656 (3) Å b = 35.939 (2) Å c = 12.149 (2) Å V = 8582 (1) Å³ Z = 16 $D_x = 1.839$ Mg m⁻³ $D_m = 1.830$ Mg m⁻³ D_m measured by flotation in CHCl₃/CH₂BrCH₂Br

Data collection

Rigaku AFC-5R diffractom-2388 observed reflections eter $[I > 3\sigma(I)]$ $\theta_{\rm max} = 27.5^{\circ}$ $\omega/2\theta$ scans $h = 0 \rightarrow 26$ Absorption correction: $k=0\to 47$ ψ scans (North, Phillips $l = 0 \rightarrow 16$ & Mathews, 1968) $T_{\rm min} = 0.79, \ T_{\rm max} = 0.99$ 3 standard reflections 2699 measured reflections monitored every 150 2440 independent reflections reflections intensity decay: 1.32%

Refinement

Refinement on F R = 0.027 wR = 0.034 S = 1.932388 reflections 270 parameters H atoms were not located $w = 1/[\sigma^2(F) + 0.0001F^2]$

Compound (2)

Crystal data

Na[Nd($C_{10}H_{12}N_2O_8$)-(H_2O)₃].5 H_2O $M_r = 599.56$ Orthorhombic Fdd2 $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.57 \text{ e } \text{Å}^{-3}$ Extinction correction: none Atomic scattering factors

from International Tables for X-ray Crystallography (1974, Vol. IV)

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 25 reflections $\theta = 11.79-13.13^{\circ}$

NAKAMURA, KURISAKI, WAKITA AND YAMAGUCHI

a = 19.543 (5) Å	$\mu = 2.3$
b = 35.683 (8) Å	T = 29
c = 12.142 (5) Å	Prisma
V = 8467 (3) Å ³	$0.2 \times$
Z = 16	Violet
$D_x = 1.881 \text{ Mg m}^{-3}$	
$D_m = 1.865 \text{ Mg m}^{-3}$	
D_m measured by flotation in	
CHCl ₃ /CH ₂ BrCH ₂ Br	

Data collection

Rigaku AFC-5R diffractometer $\omega/2\theta$ scans Absorption correction: ψ scans (North, Phillips & Mathews, 1968) $T_{\min} = 0.86, T_{\max} = 1.00$ 4082 measured reflections 3550 independent reflections 2246 observed reflections $[I > 3\sigma(I)]$

Refinement

Refinement on F R = 0.025wR = 0.031S = 1.562246 reflections 270 parameters H atoms were not located $w = 1/[\sigma^2(F) + 0.0001F^2]$

Compound (3)

Crystal data $Na[Eu(C_{10}H_{12}N_2O_8) (H_2O)_3].5H_2O$ $M_r = 607.28$ Orthorhombic Fdd2 a = 19.460 (3) Å b = 35.583 (3) Å c = 12.127 (3) Å V = 8397 (2) Å³ Z = 16 $D_x = 1.921 \text{ Mg m}^{-3}$ $D_m = 1.920 \text{ Mg m}^{-3}$ D_m measured by flotation in CHCl₃/CH₂BrCH₂Br

Data collection

Rigaku AFC-5R diffractometer $\omega/2\theta$ scans Absorption correction: ψ scans (North, Phillips & Mathews, 1968) $T_{\min} = 0.91, T_{\max} = 1.00$ 2646 measured reflections 2339 independent reflections

$\mu = 2.551 \text{ mm}^{-1}$
Γ = 298 K
Prismatic
$0.2 \times 0.2 \times 0.2$ mm
Violet

 $R_{\rm int} = 0.030$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = 0 \rightarrow 25$

 $k = 0 \rightarrow 46$

 $l = 0 \rightarrow 16$

3 standard reflections

reflections

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$

(1974, Vol. IV)

Mo $K\alpha$ radiation

Cell parameters from 25

 $\lambda = 0.71073 \text{ Å}$

reflections $\theta = 17.04 - 19.90^{\circ}$

 $\mu = 3.081 \text{ mm}^-$

 $0.4 \times 0.3 \times 0.2$ mm

2275 observed reflections

3 standard reflections

reflections

monitored every 150

intensity decay: 3.12%

 $[I > 3\sigma(I)]$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = 0 \rightarrow 25$

 $k = 0 \rightarrow 46$

 $l = 0 \rightarrow 16$

T = 298 K

Prismatic

Colorless

 $\Delta \rho_{\rm min} = -0.52 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: none

from International Tables

for X-ray Crystallography

Atomic scattering factors

monitored every 150

intensity decay: 4.15%

Refinement R

L

C(1)

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.001$
R = 0.028	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.032	$\Delta \rho_{\rm min} = -1.03 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.97	Extinction correction: none
2275 reflections	Atomic scattering factors
270 parameters	from International Tables
H atoms were not located	for X-ray Crystallography
$w = 1/[\sigma^2(F) + 0.0001F^2]$	(1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for (1)

$$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$$

	x	у	Ζ	B_{eq}
La	0.58397 (2)	0.346292 (9)	0.5	1.44 (1)
Na	0.6375 (2)	0.3686(1)	0.1886 (3)	3.7 (2)
O(1)	0.5197 (2)	0.3345(1)	0.6758 (4)	2.1 (2)
O(2)	0.5143 (3)	0.3274 (2)	0.8590 (4)	3.1 (2)
0(3)	0.7088 (2)	0.3306(1)	0.4756 (4)	2.3 (2)
O(4)	0.8132 (3)	0.3245 (2)	0.5411 (5)	3.9 (3)
0(5)	0.4697 (2)	0.3294 (1)	0.4328 (4)	2.4 (2)
0(6)	0.4052 (3)	0.2860 (2)	0.3517 (6)	5.2 (4)
0(7)	0.5983 (3)	0.3168(1)	0.3192 (4)	2.3 (2)
O(8)	0.6063 (4)	0.2676 (2)	0.2090 (5)	4.3 (3)
O(W1)	0.5008 (2)	0.4039(1)	0.5175 (4)	2.2 (2)
O(W2)	0.6382 (3)	0.3929 (2)	0.6346 (5)	2.8 (2)
O(W3)	0.6371 (3)	0.3969(1)	0.3810 (4)	2.2 (2)
O(W4)	0.5164 (5)	0.3868 (3)	0.196(1)	10.6 (7)
O(W5)	0.6164 (6)	0.3219 (2)	0.0542 (7)	8.3 (5)
O(W6)	0.8947 (5)	0.3485 (2)	0.720(1)	8.4 (6)
O(W7)	0.6864 (3)	0.2102 (2)	0.1492 (5)	3.6 (3)
O(W8)	0.7295 (7)	0.2150 (3)	-0.064 (1)	12.4 (9)
N(1)	0.6506 (3)	0.3068 (2)	0.6659 (5)	1.8 (2)
N(2)	0.5588 (3)	0.2712(1)	0.4962 (6)	2.3 (2)
C(1)	0.5445 (3)	0.3258 (2)	0.7689 (6)	2.1 (3)
C(2)	0.6195 (3)	0.3133 (2)	0.7749 (6)	2.6 (3)
C(3)	0.7509 (3)	0.3252 (2)	0.5541 (6)	2.2 (3)
C(4)	0.7232 (3)	0.3193 (2)	0.6680 (6)	2.6 (3)
C(5)	0.4510 (4)	0.2956 (2)	0.4153 (6)	2.9 (3)
C(6)	0.4841 (4)	0.2652 (2)	0.4802 (7)	3.2 (4)
C(7)	0.6004 (4)	0.2822 (2)	0.3013 (6)	2.4 (3)
C(8)	0.5973 (5)	0.2557 (2)	0.4013 (7)	3.2 (4)
C(9)	0.6497 (4)	0.2661 (2)	0.6360 (7)	2.8 (3)
C(10)	0.5807 (4)	0.2531 (3)	0.6002 (7)	2.5 (3)

Table 2. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (2)

$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$

	x	у	Ζ	B_{eq}
Nd	0.58343 (2)	0.345481 (9)	0.5	1.48 (1)
Na	0.6375 (2)	0.3681(1)	0.1860 (3)	3.8 (2)
O(1)	0.5182 (3)	0.3350 (2)	0.6678 (4)	2.0 (2)
O(2)	0.5118 (3)	0.3277 (2)	0.8514 (5)	3.1 (3)
O(3)	0.7062 (3)	0.3307 (2)	0.4702 (4)	2.4 (2)
O(4)	0.8121 (3)	0.3236 (2)	0.5318 (5)	3.6 (3)
O(5)	0.4706 (3)	0.3306(1)	0.4277 (5)	2.4 (2)
0(6)	0.4027 (4)	0.2885 (2)	0.3475 (7)	5.1 (4)
0(7)	0.5974 (3)	0.3173(1)	0.3168 (4)	2.3 (2)
O(8)	0.6060 (4)	0.2683 (2)	0.2061 (5)	4.3 (3)
O(W1)	0.5016 (3)	0.4028(1)	0.5143 (5)	2.3 (2)
O(W2)	0.6368 (3)	0.3916 (2)	0.6274 (5)	2.5 (3)
O(W3)	0.6345 (3)	0.3953 (1)	0.3788 (5)	2.1 (2)
O(W4)	0.5189 (5)	0.3878 (3)	0.176(1)	11.0 (8)
O(W5)	0.6180 (6)	0.3211 (3)	0.0474 (7)	8.0 (5)
O(W6)	0.8969 (5)	0.3490 (2)	0.703(1)	8.3 (6)
O(W7)	0.6866 (3)	0.2104 (2)	0.1458 (6)	3.6 (3)
O(W8)	0.7376 (8)	0.2142 (5)	-0.061 (1)	17(1)
N(1)	0.6495 (3)	0.3067 (2)	0.6601 (5)	1.9 (3)
N(2)	0.5574 (3)	0.2716 (2)	0.4921 (7)	2.2 (2)
C(1)	0.5429 (3)	0.3263 (2)	0.7625 (7)	1.9 (3)

141.4 (2)

79.5 (2)

72.3 (2)

61.1(1)

87.4 (2)

72.6(2)

69.9 (2)

138.5 (2)

111.2 (2)

122.7 (2)

O(5ⁱ)-Na-O(7)

 $O(5^i)$ —Na— $O(W1^i)$

O(5ⁱ)—Na—O(W3)

 $O(5^{i})$ Na O(W4) $O(5^{i})$ Na O(W5)

O(7)—Na— $O(W1^{i})$

O(7)-Na-O(W3)

O(7)—Na—O(W4)

O(7)-Na-O(W5)

 $O(W1^{i})$ —Na—O(W3)

139.8 (2)

71.4 (2)

74.1 (2)

115.5 (3)

129.0 (3) 78.5 (2)

73.8 (2)

83.1 (3)

81.9 (3)

77.6 (2)

N(1)

N(2) **C**(1)

C(2) C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9) C(10)

La-O(1)

La-O(3)

La-O(5)

La-O(7)

La = O(W1)

La-O(W2)

La-O(W3)

O(1)—La—O(3) O(1)—La—O(5)

O(1)-La-O(7)

O(1) La O(W1)O(1) La O(W1)O(1) La O(W2)

O(1)-La-O(W3)

O(1)—La—N(1) O(1)—La—N(2)

O(3)—La—O(5)O(3)—La—O(7)

O(3)-La-O(W1)

O(3)—La—O(W2)O(3)—La—O(W3)

O(3)—La—N(1)O(3)—La—N(2)

O(5)-La-O(7)

O(5)-La-O(W1)

O(5)—La—O(W2)

O(5)-La-O(W3)

O(5)-La-N(1)

La-N(1)

C(2)	0.6182 (4)	0.3140 (2)	0.7694 (6)	2.4 (3)	O(5)—La— $N(2)$	65.7 (2)	$O(W1^{i})$ —Na— $O(W4)$	155.6 (4)
$\tilde{C}(3)$	0.7495 (4)	0.3249 (2)	0.5467 (6)	1.9 (3)	O(7)—La— $O(W1)$	118.7 (2)	$O(W1^i)$ Na $O(W5)$	100.7 (3)
C(4)	0.7228 (4)	0.3194 (3)	0.6619 (7)	2.7 (3)	O(7)—La— $O(W2)$	143.4 (2)	O(W3)—Na— $O(W4)$	81.9 (4)
C(5)	0.4503 (4)	0.2969 (3)	0.4119 (7)	3.0 (4)	O(7)—La— $O(W3)$	75.8 (2)	O(W3)—Na— $O(W5)$	155.6 (3)
C(6)	0.4821 (4)	0.2663 (2)	0.4766 (8)	3.0 (4)	O(7)—La— $N(1)$	111.9 (2)	O(W4)—Na— $O(W5)$	92.5 (4)
C(7)	0.5990 (4)	0.2829 (2)	0.2986 (7)	2.4 (3)	O(7)—La— $N(2)$	65.2 (2)	- 、 、 、 、 、	
C(8)	0.5949 (6)	0.2557 (3)	0.3972 (8)	3.1 (4)		2 745 (7)		2 (05 (0)
C(9)	0.6483 (4)	0.2656 (2)	0.6319 (7)	2.6 (3)	$O(1) \cdots O(W3^n)$	2.745(7)	$O(8) \cdots O(W/)$	2.695 (9)
C(10)	0.5786 (4)	0.2528 (3)	0.5961 (8)	2.6 (4)	$O(2) \cdots O(W(2^n))$	2.717 (8)	$O(W1) \cdots O(W7)$	2.772(7)
-()		0.2020(0)	0.000 000		$O(3) \cdots O(W^{(1)})$	2./18(/)	$O(W3) \cdots O(W7^{n})$	2.703 (8)
	r			• • • •	$O(4) \cdots O(W^{2})$	2.6/6 (8)	$O(W4) \cdots O(W6^{m})$	2.78(1)
Table 3.	Fractional	atomic coord	iinaies ana e	equivaieni	$O(4) \cdots O(W6)$	2.83(1)	$O(W4) \cdots O(W8^{\circ})$	2.81(2)
isot	tronic displac	rement paran	neters (Ų) fo	or (3)	$O(6) \cdots O(W6^{m})$	2.76(1)	$O(W7) \cdots O(W8)$	2.73(1)
				. (-)	$O(6) \cdots O(W8^{n})$	2.84 (2)	$O(W8) \cdots O(W8^{n})$	2.64 (2)
	$B_{ac} = (8$	$(\pi^2/3)\sum \sum U_{ii}$	1*a*a.a.		$O(8) \cdots O(W5)$	2.72(1)		
		, <i>e,_</i> ,_,e,,,	·, ··, ··, ··		Symmetry codes: (i)	$\frac{1}{4} + x, \frac{3}{4} - y, x$	$z - \frac{1}{4}$; (ii) $x - \frac{1}{4}, \frac{3}{4} - \frac{1}{2}$	$y_{1} + z_{2}$ (iii)
	x	у	Ζ	B_{eq}	$r = \frac{1}{2}$ v $z = \frac{1}{2}$ (iv)	1 - r + v	1 + 7 (v) $5 - r + 1 + y$	$v^{4} + 7$ (vi)
Eu	0.58319 (2)	0.345070 (9)	0.5	1.26 (1)	2, 9, 2 2, (11)	· ^, ^z),		$, \frac{1}{4} + 2, (1)$
Na	0.6378 (2)	0.3677 (1)	0.1867 (4)	3.5 (2)	$\frac{3}{2} - x, \frac{1}{2} - y, z.$			
O(1)	0.5181 (3)	0.3354 (2)	0.6649 (5)	1.8 (2)				
O(2)	0.5101 (3)	0.3283 (2)	0.8474 (5)	3.0 (3)	Table 5 Coloria	d a como com	a manager at ang (Å 9	$\int f_{\alpha m}(2)$
O(3)	0.7043 (3)	0.3314 (2)	0.4689 (4)	2.2 (2)	Table 5. Selecte	a geometri	c parameters (A,) <i>jor</i> (2)
O(4)	0.8115 (3)	0.3234 (2)	0.5284 (5)	3.4 (3)	Nd—O(1)	2.432 (5)	Nd—N(2)	2.685 (5)
O(5)	0.4716 (3)	0.3314 (2)	0.4277 (5)	2.2 (2)	Nd—O(3)	2.483 (5)	$Na = O(5^i)$	2.448 (6)
O(6)	0.4014 (4)	0.2902 (2)	0.3473 (7)	5.0 (4)	Nd—O(5)	2.432 (5)	Na = O(7)	2.535 (6)
O(7)	0.5970(3)	0.3179 (2)	0.3180 (5)	2.3 (2)	Nd—O(7)	2.456 (5)	$Na = O(W1^{i})$	2.535 (6)
O(8)	0.6060 (4)	0.2688 (2)	0.2059 (5)	3.8 (3)	$Nd \rightarrow O(W1)$	2.602 (5)	Na - O(W3)	2.534 (7)
O(W1)	0.5026 (3)	0.4020(1)	0.5142 (5)	2.2 (2)	Nd - O(W2)	2.487 (6)	Na - O(W4)	2.42(1)
O(W2)	0.6356 (3)	0.3900 (2)	0.6256 (5)	2.4 (3)	Nd - O(W3)	2.513 (5)	Na - O(W5)	2.408 (9)
O(W3)	0.6329 (3)	0.3943 (2)	0.3786 (5)	1.8 (2)	Nd—N(1)	2.712 (6)		
O(W4)	0.5204 (6)	0.3871 (3)	0.169(1)	9.7 (8)				
O(W5)	0.6189 (7)	0.3211 (3)	0.0469 (8)	7.4 (6)	O(1) - Nd - O(3)	126.6 (2)	O(W1)—Nd— $O(W2)$	72.3 (2)
O(W6)	0.8956 (6)	0.3490 (2)	0.696(1)	8.0(7)	O(1)—Nd—O(5)	78.1 (2)	O(W1) Nd $O(W3)$	74.2 (2)
O(W7)	0.6873 (4)	0.2101 (2)	0.1465 (6)	3.4 (3)	O(1)—Nd—O(7)	138.9 (2)	O(W1)—Nd—N(1)	130.2 (2)
O(W8)	0.7391 (9)	0.2126 (5)	-0.060(1)	16(1)	O(1) Nd $O(W1)$	75.1 (2)	O(W1)—Nd—N(2)	131.1 (2)

6)	0.4014 (4)	0.2902 (2)	0.3473 (7)	5.0 (4)	Nd-0(5)	2,432 (5)	$Na \rightarrow O(7)$	2,535(6)
7)	0.5970(3)	0.3179 (2)	0.3180 (5)	2.3 (2)	Nd - O(7)	2.456 (5)	$Na = O(W1^{i})$	2.535 (6)
8)	0.6060 (4)	0.2688 (2)	0.2059 (5)	3.8 (3)	$Nd \rightarrow O(W1)$	2,602 (5)	$Na \rightarrow O(W3)$	2.534(7)
W1)	0.5026 (3)	0.4020(1)	0.5142 (5)	2.2 (2)	$Nd \rightarrow O(W^2)$	2,487 (6)	Na = O(W4)	2.42(1)
W2)	0.6356 (3)	0.3900 (2)	0.6256 (5)	2.4 (3)	$Nd \rightarrow O(W3)$	2.513 (5)	Na = O(W5)	2.408 (9)
W3)	0.6329 (3)	0.3943 (2)	0.3786 (5)	1.8 (2)	Nd = N(1)	2.712 (6)	112 0(115)	2.100())
W4)	0.5204 (6)	0.3871 (3)	0.169 (1)	9.7 (8)		2.712 (0)		
W5)	0.6189 (7)	0.3211 (3)	0.0469 (8)	7.4 (6)	O(1)—Nd—O(3)	126.6 (2)	O(W1)—Nd— $O(W2)$	72.3 (2)
W6)	0.8956 (6)	0.3490 (2)	0.696(1)	8.0(7)	O(1)—Nd—O(5)	78.1 (2)	O(W1)-Nd- $O(W3)$	74.2 (2)
W7)	0.6873 (4)	0.2101 (2)	0.1465 (6)	3.4 (3)	O(1)—Nd—O(7)	138.9 (2)	O(W1)—Nd—N(1)	130.2 (2)
W8)	0.7391 (9)	0.2126 (5)	-0.060 (1)	16(1)	O(1) Nd $O(W1)$	75.1 (2)	O(W1)—Nd—N(2)	131.1 (2)
1)	0.6489 (3)	0.3064 (2)	0.6594 (6)	1.7 (3)	O(1)-Nd- $O(W2)$	78.5 (2)	O(W2)—Nd— $O(W3)$	74.4 (2)
2)	0.5564 (3)	0.2720 (2)	0.4915 (7)	2.0 (2)	O(1)—Nd— $O(W3)$	143.8 (2)	O(W2)—Nd—N(1)	72.0 (2)
1)	0.5418 (3)	0.3268 (2)	0.7578 (8)	1.8 (3)	O(1)—Nd—N(1)	64.6 (2)	$O(W_2)$ —Nd—N(2)	138.6 (2)
2)	0.6167 (4)	0.3140 (2)	0.7670 (7)	2.2 (3)	O(1)—Nd—N(2)	77.3 (2)	O(W3)—Nd—N(1)	126.2 (2)
3)	0.7487 (4)	0.3247 (2)	0.5444 (6)	2.0 (3)	O(3)—Nd—O(5)	141.0 (2)	O(W3)—Nd—N(2)	138.4 (2)
4)	0.7221 (4)	0.3189 (3)	0.6597 (7)	2.4 (4)	O(3)—Nd—O(7)	70.9 (2)	N(1)—Nd—N(2)	67.4 (2)
5)	0.4499 (5)	0.2981 (3)	0.4100 (7)	2.6 (4)	O(3)—Nd— $O(W1)$	140.5 (2)	$O(5^{1})$ —Na— $O(7)$	139.9 (2)
6)	0.4808 (5)	0.2669 (2)	0.4760 (8)	2.9 (4)	O(3)—Nd—O(W2)	80.0 (2)	O(5')—Na— $O(W1')$	69.6 (2)
7)	0.5991 (4)	0.2830 (2)	0.2988 (7)	2.2 (3)	O(3)—Nd—O(W3)	71.4 (2)	$O(5^{\circ})$ —Na— $O(W3)$	76.6 (2)
8)	0.5937 (6)	0.2561 (3)	0.396 (1)	3.2 (5)	O(3)—Nd—N(1)	62.3 (2)	$O(5^{\circ})$ —Na— $O(W4)$	114.6 (3)
9)	0.6477 (4)	0.2658 (2)	0.6329 (7)	2.3 (3)	O(3)—Nd—N(2)	88.2 (2)	$O(5^{\circ})$ —Na— $O(W5)$	126.7 (3)
10)	0.5774 (5)	0.2528 (3)	0.5958 (9)	2.5 (4)	O(5)—Nd—O(7)	71.6 (2)	O(7) - Na - O(W1')	80.0 (2)
,					O(5)-Nd- $O(W1)$	68.8 (2)	O(7)—Na—O(W3)	71.8 (2)
Table	1 Salaata	d a a a un aturi a	nonquestone (Å	(1)	O(5)—Nd—O(W2)	138.5 (2)	O(7)—Na— $O(W4)$	86.7 (3)
Table	4. Selecie	a geometric	parameters (A,	(1)	O(5)—Nd—O(W3)	107.6 (2)	O(7)—Na—O(W5)	83.7 (3)
-O(1)		2.518 (5)	LaN(2)	2.743 (5)	O(5)—Nd—N(1)	125.4 (2)	O(W1')—Na— $O(W3)$	77.7 (2)
-0(3)		2.534 (4)	$Na - O(5^1)$	2.472 (6)	O(5)—Nd—N(2)	66.5 (2)	O(W1')—Na— $O(W4)$	160.7 (4)
-0(5)		2.467 (5)	Na-0(7)	2.566 (6)	O(7)—Nd— $O(W1)$	116.7 (2)	$O(W1^1)$ —Na— $O(W5)$	101.3 (3)
-O(7)		2.455 (5)	$Na - O(W1^{i})$	2.555 (6)	O(7)—Nd—O(W2)	141.9 (2)	O(W3)—Na—O(W4)	85.0 (4)
-O(W1)	1	2.646 (4)	Na-O(W3)	2.550 (6)	O(7)—Nd— $O(W3)$	73.4 (2)	O(W3)—Na— $O(W5)$	155.3 (3)
-O(W2)		2.572 (5)	Na - O(W4)	2.47 (1)	O(7)—Nd—N(1)	112.8 (2)	O(W4)—Na— $O(W5)$	90.9 (5)
-O(W3))	2.548 (5)	Na = O(W5)	2.378 (9)	O(7)—Nd—N(2)	65.6 (2)		
—N(1)		2.792 (6)			$O(1) \cdot \cdot \cdot O(W3^n)$	2.747 (8)	$O(8) \cdot \cdot \cdot O(W7)$	2.698 (9)
1) 1.	0(2)	122.2 (2)		72 2 (2)	$O(2) \cdot \cdot \cdot O(W2^n)$	2.696 (8)	$O(W1) \cdots O(W7^{v})$	2.786 (8)
(1) - La - La	-0(3)	123.2(2)	O(W1) - La - O(W2)	72.3 (2)	$O(3) \cdots O(W1')$	2.718 (8)	$O(W3) \cdots O(W7^{v})$	2.716 (8)
(1) - La - (1)	-0(3)	17.4 (2)	O(W1) - La - O(W3)	120.0 (2)	$O(4) \cdots O(W2^{i})$	2.682 (8)	$O(W4) \cdots O(W6^{iii})$	2.78(1)
(I)—La—	-O(7)	138.0 (2)	$O(W_1) - La - N(1)$	129.0 (2)	$O(4) \cdot \cdot \cdot O(W6)$	2.81(1)	$O(W4) \cdots O(W8^{v})$	2.736 (2)
(1) - La - (1)	$-O(W_1)$	73.8(2)	O(W1) - La - N(2)	741(2)	$O(6) \cdots O(W6^{in})$	2.78(1)	$O(W7) \cdots O(W8)$	2.71(1)
1)—La—	$-O(W_2)$	11.2 (2)	$O(W_2) = La = O(W_3)$	74.1 (2)	$O(6) \cdots O(W8^{i_v})$	2.96 (2)	$O(W8) \cdots O(W8^{v_i})$	2.60 (3)
1)—La—	-O(WS)	143.9 (2)	$O(m_2)$ —La— $N(1)$ $O(W_2)$ La $N(2)$	/1.2(2)	$O(8) \cdots O(W5)$	2.70(1)		. ,
(I)—La—	-IN(1)	02.4 (2)	O(W2)—La— $N(2)$	130.3 (2)	0 · · · · · · · · · · · · · · · · · · ·			
1)—La—	-IN(2)	/0.0 (2)	O(W3)—La— $N(1)$	125.5 (2)	Symmetry codes: (1)	$\frac{1}{4} + x, \frac{3}{4} - y,$	$z - \frac{1}{4};$ (11) $x - \frac{1}{4}, \frac{3}{4} - \frac{1}{2}$	$y, \frac{1}{4} + z; (111)$
3)—La—	-0(3)	142.0 (2)	$U(w_3)$ —La— $N(2)$	140.1 (2)	$x - \frac{1}{2}, y, z - \frac{1}{2};$ (iv)	$1 - x, \frac{1}{2} - y$	$\frac{1}{2} + z$; (v) $\frac{5}{4} - x$, $\frac{1}{4} + \frac{1}{2}$	$y, \frac{1}{4} + z;$ (vi)
3)—La—	-U(/)	/1.9(2)	N(1)—La— $N(2)$	00.2 (2)	2			-

	-					
3	 x,	1/2	-	у,	Ζ.	

Table 6. Selected geometric parameters (Å, °) for (3)

2 391 (6)	E_{II} — $N(2)$	2,653 (6)
2.436 (5)	Na - O(5')	2.438 (7)
2.392 (5)	Na-0(7)	2.514 (7)
2.425 (6)	Na - O(W1')	2.524 (7)
2.566 (5)	Na-O(W3)	2.515 (7)
2.432 (6)	Na—O(W4)	2.40(1)
	2.391 (6) 2.436 (5) 2.392 (5) 2.425 (6) 2.566 (5) 2.432 (6)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

NAKAMURA, KURISAKI, WAKITA AND YAMAGUCHI

Eu—O(W3)	2.484 (5)	Na—O(W5)	2.40 (1)
Eu—N(1)	2.695 (7)		
O(1)—Eu—O(3)	127.8 (2)	O(W1)—Eu—O(W2)	72.3 (2)
O(1)—Eu—O(5)	78.3 (2)	O(W1)—Eu— $O(W3)$	73.8 (2)
O(1)—Eu—O(7)	139.7 (2)	O(W1)—Eu—N(1)	130.1 (2)
O(1)—Eu—O(W1)	74.6 (2)	O(W1)—Eu—N(2)	130.9 (2)
O(1)—Eu—O(W2)	78.0 (2)	O(W2)—Eu—O(W3)	75.2 (2)
O(1)—Eu—O(W3)	143.4 (2)	O(W2)—Eu—N(1)	71.8 (2)
O(1)—Eu—N(1)	65.0 (2)	O(W2)—Eu—N(2)	138.6 (2)
O(1)-Eu-N(2)	77.7 (2)	O(W3)—Eu—N(1)	126.9 (2)
O(3)—Eu—O(5)	141.3 (2)	O(W3)—Eu—N(2)	138.1 (2)
O(3)—Eu—O(7)	70.9 (2)	N(1)—Eu— $N(2)$	67.7 (2)
O(3)—Eu—O(W1)	139.4 (2)	O(5')NaO(7)	139.8 (3)
O(3)—Eu—O(W2)	79.8 (2)	O(5')—Na— $O(W1')$	68.3 (2)
O(3)—Eu—O(W3)	70.9 (2)	O(5')—Na— $O(W3)$	77.8 (2)
O(3)—Eu—N(1)	63.2 (2)	$O(5^{\circ})$ —Na— $O(W5)$	125.7 (3)
O(3)—Eu—N(2)	89.3 (2)	$O(5^{t})$ —Na— $O(W4)$	114.9 (3)
O(5)—Eu—O(7)	71.7 (2)	$O(7)$ —Na— $O(W1^{i})$	81.2 (2)
O(5)—Eu—O(W1)	68.3 (2)	O(7)—Na—O(W3)	70.5 (2)
O(5)—Eu—O(W2)	138.1 (2)	O(7)—Na—O(W4)	87.6 (4)
O(5)—Eu—O(W3)	106.2 (2)	O(7)—Na—O(W5)	84.9 (3)
O(5)—Eu—N(1)	126.2 (2)	$O(W1^{i})$ —Na— $O(W3)$	78.0 (2)
O(5)—Eu—N(2)	66.9 (2)	$O(W1^{i})$ —Na— $O(W4)$	163.3 (5)
O(7)—Eu—O(W1)	116.3 (2)	$O(W1^i)$ —Na— $O(W5)$	102.0 (4)
O(7)—Eu—O(W2)	141.8 (2)	O(W3)—Na—O(W4)	86.6 (4)
O(7)—Eu—O(W3)	72.5 (2)	O(W3)—Na—O(W5)	155.2 (3)
O(7)—Eu—N(1)	113.4 (2)	O(W4)—Na—O(W5)	89.3 (5)
O(7)—Eu—N(2)	66.1 (2)		
$O(1) \cdot \cdot \cdot O(W3^{ii})$	2.764 (8)	$O(8) \cdot \cdot \cdot O(W7)$	2.72 (1)
$O(2) \cdot \cdot \cdot O(W2^{ii})$	2.696 (9)	$O(W1) \cdot \cdot \cdot O(W7^{v})$	2.772 (8)
$O(3) \cdot \cdot \cdot O(W1^{i})$	2.721 (8)	$O(W3) \cdot \cdot \cdot O(W7^{v})$	2.719 (8)
$O(4) \cdot \cdot \cdot O(W2^i)$	2.684 (9)	O(W4)· · · O(W6 ⁱⁱⁱ)	2.80 (2)
$O(4) \cdot \cdot \cdot O(W6)$	2.76(1)	$O(W4) \cdot \cdot \cdot O(W8^{v})$	2.71 (2)
$O(6) \cdot \cdot \cdot O(W6^{iii})$	2.78(1)	$O(W7) \cdot \cdot \cdot O(W8)$	2.70 (2)
$O(6) \cdot \cdot \cdot O(W8^{iv})$	2.96 (2)	$O(W8) \cdot \cdot \cdot O(W8^{vi})$	2.69 (4)
$O(8) \cdot \cdot \cdot O(W5)$	2.69(1)		

Symmetry codes: (i) $\frac{1}{4} + x$, $\frac{3}{4} - y$, $z - \frac{1}{4}$; (ii) $x - \frac{1}{4}$, $\frac{3}{4} - y$, $\frac{1}{4} + z$; (iii) $x - \frac{1}{2}$, y, $z - \frac{1}{2}$; (iv) 1 - x, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (v) $\frac{5}{4} - x$, $\frac{1}{4} + y$, $\frac{1}{4} + z$; (vi) $\frac{3}{2} - x$, $\frac{1}{2} - y$, z.

The structures were solved by Patterson and Fourier techniques using *DIRDIF* (Beurskens *et al.*, 1992). All non-H atoms were refined anisotropically (*SAPI91*; Fan, 1991). H atoms were not located. Data collection and cell refinement: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1988). Data reduction: *TEXSAN* (Molecular Structure Corporation, 1993). Molecular graphics: *ORTEP*II (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters and bond distances and angles involving non-H atoms have been deposited with the IUCr (Reference: MU1164). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
- Fan, H.-F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
- Hoard, J. L., Lee, B. & Lind, M. D. (1965). J. Am. Chem. Soc. 87, 1612-1613.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kurisaki, T., Yamaguchi, T. & Wakita, H. (1993). J. Alloy. Compd. 192, 293-295.

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1993). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Nakamura, K., Yamaguchi, T., Wakita, H., Nomura, M. & Choppin, G. R. (1993). Photon Factory Activity Report, Vol. 11, p. 173. National Laboratory for High Energy Physics, Oho, Tukuba 305, Japan.

Nassimbeni, L. R., Wright, M. R. W., van Niekerk, J. C. & McCallum, P. A. (1979). Acta Cryst. B35, 1341-1345.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Templeton, L. K., Templeton, D. H. & Zalkin, A. (1985). Acta Cryst. C41, 355-358.
- Templeton, L. K., Templeton, D. H., Zalkin, A. & Ruben, H. W. (1982). Acta Cryst. B38, 2155-2159.
- Yamaguchi, T., Nomura, M., Wakita, H. & Ohtaki, H. (1988). J. Chem. Phys. 89, 5153-5159.

Acta Cryst. (1995). C51, 1563-1565

Phenylpiperazinium Trichloromercurate

FATMA ZOUARI AND ABDELHAMID BEN SALAH

Laboratoire de l'Etat Solide, Faculte des Sciences de Sfax, BP763, 3038 Sfax, Tunisia

ERIC R. HOVESTREYDT

Siemens AG, Department AUT 37 PM, PO Box 21 1262, 76181 Karlsruhe, Germany

(Received 28 April 1994; accepted 22 November 1994)

Abstract

The structure of *N*-phenylpiperazinium trichloromercurate, $(C_{10}H_{15}N_2)[HgCl_3]$, consists of isolated bitetrahedral $[Hg_2Cl_6]^{2-}$ units, di- μ -chloro-bis(dichloromercury), sharing one edge, with two short bonds of 2.346 (7) and 2.365 (7) Å, and two long bonds of 2.852 (5) and 2.624 (7) Å. The organic cation, $(C_{10}H_{15}N_2)^+$, is located between the $[Hg_2Cl_6]^{2-}$ units. The phenylpiperazinium groups are connected to the Hg_2Cl_6 dimer by hydrogen bonds to the Cl atoms.

Comment

The reaction of substituted ammonium halogenides with metal halogenides leads to a series of compounds of the general formula RMX_3 , with R being an alkyl or aryl substituent, M a divalent metal and X = Cl, Br, I.

These substances exhibit interesting structural and physical properties such as ferroelectricity $\{e.g. [N(CH_3)_4][HgBr_3]$ (White, 1963) and (CH_3NH_3) - $[HgCl_3]$ (Ben Salah, Bats, Kalus, Fuess & Daoud, 1982) $\}$.